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Abstract: Smart homes promise to improve the quality of life of residents. However, they collect
vasts amounts of personal and sensitive data, making privacy protection critically important. We
propose a framework, called PRASH, for modeling and analyzing the privacy risks of smart homes.
It is composed of three modules: a system model, a threat model, and a set of privacy metrics,
which together are used for calculating the privacy risk exposure of a smart home system. By
representing a smart home through a formal specification, PRASH allows for early identification of
threats, better planning for risk management scenarios, and mitigation of potential impacts caused
by attacks before they compromise the lives of residents. To demonstrate the capabilities of PRASH,
an executable version of the smart home system configuration was generated using the proposed
formal specification, which was then analyzed to find potential attack paths while also mitigating the
impacts of those attacks. Thereby, we add important contributions to the body of knowledge on the
mitigations of threat agents violating the privacy of users in their homes. Overall, the use of PRASH
will help residents to preserve their right to privacy in the face of the emerging challenges affecting
smart homes.

Keywords: smart home; IoT; privacy; risk analysis; system model; threat model; privacy metrics;
attack taxonomy

1. Introduction

In recent years, the pervasiveness of Internet of Things (IoT) technologies has con-
tributed to transforming the home into a smart home. The smart home is one of the most
well-known IoT applications, in which heterogeneous devices ranging from smart speak-
ers to electronic door locks are connected to the home network and controlled remotely
through the Internet. These connected devices collect and exchange data with each other
and their users using embedded sensors and the Internet, seamlessly merging the physical
and digital worlds inside the home. Consequently, these technologies are linked to a variety
of benefits, including improved convenience, energy efficiency, enhanced security and
safety, and more [1]. The smart home market has seen rapid growth over the past few years.
Indeed, the global smart home market was projected to reach approximately $53.45 billion
in 2022 [2] with an estimated compound growth of more than 14.5% from 2017 to 2022.
This demonstrates the increasing consumer demand and rising adoption of this technology.

As smart homes become more popular, the potential for exploitation by malicious
threat agents is likely to increase. Indeed, the growing use of smart home devices in
households is accompanied by substantial privacy risks stemming from having data being
misused by malicious threat agents [3–5]. The home is often described as a person’s castle or
sanctuary; a private and protected space. Residents, for example, expect that their intimate
conversations, emotions, expressions, family photos, video footage, and daily activities, will
remain inside the home and will thus not be shared with unauthorized entities. However,
smart home devices challenge this assumption. Various devices are installed with cameras,
microphones, location trackers, and may have weak built-in privacy and security measures.
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This makes them vulnerable to cyber attacks that could expose private data and information
about the residents, including children and visitors. Some examples of common attack
vectors (i.e., methods used to circumvent the security or privacy of a system) targeting
connected devices are vulnerable services, weak authentication, and default configurations
[6]. A threat agent may need to only compromise a vulnerability in a single component,
such as the smart home gateway, to obtain access to the home area network, and as a
result, access household data. It is thus critical to understand the privacy implications of
connected devices so that consumers are aware of privacy risks and that these risks can be
mitigated without putting the responsibility completely on the users.

Accordingly, we propose a novel contribution to the field of smart homes, specifically
a framework called PRASH (Privacy Risk Analysis of Smart Homes), for modeling and
analyzing privacy risks of smart homes. PRASH is primarily aimed at researchers and
analysts with an interest in smart home systems to help deepen their understanding and
reasoning about the privacy concerns affecting such systems. The proposed framework is
intended to guide these people in systematically identifying privacy threats and assessing
the privacy risks associated with them. For analyzing privacy risks and automating
their detection and evaluation, PRASH uses a privacy attack taxonomy, attack trees, and
privacy metrics. Given the dynamic and evolving features of smart home technologies,
providing automatic methods for conducting risk evaluation is a vital requirement. Existing
risk assessment procedures were developed in large part prior to the IoT [7], and as a
result, they may not be able to handle the complexity or pervasiveness of smart homes.
PRASH was designed to address that need, to raise awareness of risks arising in the smart
home. Through the use of quantitative metrics, the framework also helps remove potential
subjectivity that might emerge while conducting a manual risk analysis process. This is
done through the risk scores, indicating the severity levels of privacy violations, which may
be automatically computed through the framework’s algorithm. Overall, the proposed
framework contributes to the advancement of risk analysis research for smart homes
where privacy enforcement is a critical element, and deepens the understanding of risks
introduced when IoT devices are added to private homes.

The rest of the paper is organized as follows. In Section 2, we describe the components
of a smart home. Next, in Section 3, we construct a taxonomy of privacy attacks. In
Section 4, we present related work on threat modeling, and risk analysis models and
frameworks related to the smart home and the IoT. Then, in Section 5, we describe our
proposed framework for modeling and analyzing privacy risks of smart homes. The
framework’s usefulness is illustrated in Section 6 in a practical use case that instantiated
and used an encoded version of the system model. In Section 7, we discuss extensions
and limitations of the framework. Finally, in Section 8, we conclude the paper and identify
some avenues for future work.

2. The Smart Home Components

Smart homes can be analyzed from the perspective of sociotechnical systems of
systems. Sociotechnical systems of systems incorporate human behavior, technology, and
policies that influence human behavior by combining the cyber (digital) world with the
physical world [8]. Based on the work of Lopez et al. [9] in relation to the analysis of privacy
threats in scenarios involving sensing technologies, we consider the user and network
as the entities being threatened. Moreover, we also add the hardware as an additional
entity that can be threatened directly by privacy attacks. Using this representation, we
illustrate the components of a smart home in Figure 1 and describe each conceptual layer.
Based on the functional classification of smart home devices we proposed earlier in [10], in
Table 1, we summarize the hardware and software capabilities that are supported by smart
home devices.

Hardware layer. The physical layer consists of the physical components of the smart
home. Components include the connected devices, such as home appliances; networking
devices such as routers, switches, and gateways; and sensors that can be attached to
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different objects. Included here are also mobile devices such as smartphones that are used
by end-users to configure and manage the home. Typically, commercial smart homes
interconnect devices through a central gateway (hub) device [11]. Gateways connect the
local IoT (home area) network to the Internet, oftentimes via a residential router. Commonly,
a smart home architecture utilizes a backend architecture, leveraging cloud data centers for
processing user data and for rendering its services. At a minimum, devices have firmware,
but may also include an operating system and support for services and applications.

Network layer. The network layer connects devices found in the hardware layer and
allows for remote control of the home. A core enabler for smart homes is the communication
infrastructure and related networking protocols. Various networking technologies such as
Zigbee, Wi-Fi, and BLE protocols may be supported by devices found in the hardware layer.
The network layer may also incorporate application layer protocols such as MQTT, CoAP,
and HTTP. A smart home may also have communication endpoints that interconnect it to
systems hosted and managed outside of the physical home environment, e.g., to network
storage, file sharing applications, and application programming interfaces (APIs), managed
by third-parties.

User layer. The user layer forms or recognizes the human entities. This layer includes
the smart home residents and other stakeholders that interact with the home. Typically,
the user roles can be grouped into data subject, data controller, and data user [12]. The
data subject represents the entity, commonly the homeowner or family, that interacts with
the smart home and whose data are processed. The data controller represents the entity,
commonly the service provider or manufacturer, who is responsible for processing the
data subject’s data. The data user represents the entity, typically working with the data
controller, who may access the data subject’s data to provide a service.

Figure 1. The components of a smart home. At the center are the users, particularly the smart home
residents. Users interact with their home via the hardware layer, typically through mobile devices.
The network layer is responsible for implementing the communication and providing connectivity
between the users and their homes. Data and software represent crosscutting components as data are
generated, collected, processed, and exchanged at different layers, and software, which can include
machine learning models, is integrated in the different conceptual layers.
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Table 1. An overview of capabilities supported by smart home devices.

Capability Description

Gateway functionality Provides built-in gateway functionality permitting other devices to be intercon-
nected through it, without requiring additional hardware dependencies

Battery source Uses a battery as its primary power source
Integrated sensors Embeds sensors, e.g., motion detectors

Integrated actuators Embeds actuators, e.g., electrical motors

Wireless protocols Supports wireless protocols, e.g., Wi-Fi, to transfer information

Wired protocols Supports wired protocols, e.g., Ethernet, to transfer information

Cloud/server Communicates with an external backend server, e.g., for cloud storage purposes

API Exposes a software interface that could allow for its programmatic access, control,
and management

IFTTT Provides the facility for users to create chains of conditional statements triggered by
changes that occur within other web services

Web browser accessibility Provides access via a web browser, e.g., Firefox

Smartphone accessibility Provides access via a smartphone application, e.g., iOS application

Remote access Supports remote access, control, and management over the Internet

The integration and interdependencies of the different cyber and physical components
of a smart home result in vulnerabilities that can be compromised through cyber attacks.
In the next section, we present an overview of attacks aimed at compromising the privacy
of the smart home residents.

3. Smart Home Privacy Attacks

Privacy threats affecting IoT systems, and hence also smart homes, are characterized
by access, collection, processing, and disclosure of sensitive information in contravention
of individuals’ expectations [13,14]. Typically, the goal of a threat agent falls into one or
more of three categories: (i) stealing information, e.g., user credentials, (ii) tracking user
information, e.g., location, or (iii) taking control of a system, e.g., through malware [15]. For
privacy risk analysis, the attacker’s goals are typically focused on (i) and (ii). Leveraging
the theory of contextual integrity (CI) [16], we assume that a privacy threat occurs, as a
result of a successful attack, when private information is accessed in a way that can be used
against the original information norms and control of the individual. Specifically, a privacy
attack occurs when the user’s identity is revealed or becomes associated with data that are
considered private by the data’s subject.

Using the smart home conceptual layers introduced in Section 2 as a reference frame-
work, we identify privacy attacks targeting the smart home. While there are taxonomies
that are centered on privacy, for instance, Solove’s taxonomy [17] that attempts to con-
ceptualize the social and legal aspects of privacy, our taxonomy has different objectives.
Specifically, we developed the taxonomy to better understand attacks targeting the home
by exploiting vulnerabilities arising from its enabling technologies. Having a taxonomy
that is applicable to smart homes is a research gap that the taxonomy fills. The taxonomy
also focuses on cyber threats to smart homes already observed in the real world or in
controlled experiments, along with potential future vulnerabilities exposed by specific
configurations and technology. In the threat model in Section 5.2, the taxonomy was used
for constructing attack trees.

While we do not claim that the constructed taxonomy is comprehensive, we conducted
a systematic search process for identifying literature related to privacy attacks. Specifically,
we queried three key databases, i.e., Google Scholar, Scopus, and Web of Science, using
the search terms: (“smart home” OR “connected home” OR “home automation”) AND
(“privacy”) AND (“risk” OR “threat” OR “attack”). The search terms were used against
the titles and abstracts of potential contributions. In the search process, we excluded
articles that were: non-English texts, not peer-reviewed, or did not cover (i) and (ii), as
described above, as attacker goals. Additionally, we excluded grants, patents, and policy
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documents from the results. The majority of the literature retrieved was from 2015 to 2020.
Work predating that term was sparse and did not consider the IoT and AI features of the
contemporary home.

The resulting taxonomy is displayed in Figure 2. While the taxonomy was developed
with privacy compromise being the attacker’s main goal, by the nature of privacy it is
common that some included attacks, in particular active attacks, also violate the security
and safety of individuals. For example, a data poisoning attack (Section 3, item 11 below)
may lead to severe, potentially fatal consequences to users, especially when it targets health
devices, such as insulin pumps, in certain smart home use cases.

Figure 2. Taxonomy of privacy attacks on the smart home structured, according to the entities they target. Hardware layer
attacks target the physical components; network layer attacks target the communication and connectivity; and user layer
attacks target the smart home users. Attacks also compromise the software and data that are present across the different
conceptual layers of the smart home.

For grouping the retrieved attacks we use the threatened entity as the main classifier
and the access level (active attack or passive attack) as a second dimension. The access level
dimension was observed as a distinguishing category for privacy attacks in comparison
to other attributes, e.g., the attacker’s location. Active attacks occur when a threat agent
attempts to alter the system’s resources or affect their operation in order to gain access
to information [18]. Passive attacks attempt to learn or make use of information from
the system, without affecting the system’s resources [18]. The different attack classes are
discussed and exemplified hereunder.

Hardware layer attack. Smart home devices come in various forms, with some being
installed at fixed locations (e.g., smart thermostats), some being portable and possibly
brought in by guests (e.g., gaming consoles), and others being able to roam around the
home (e.g., robotic vacuum cleaners). Regardless of the cases, such devices tend to be
subject to hardware compromise.

1. Node tampering: These attacks may range from changing a physical component, e.g.,
an integrated circuit, in a device, to the installation of a compromised device that may
act as a covert spy. An example of a device tampering attack against a smart meter
was demonstrated by the researchers in [19]. Tampering may also occur as a direct
result of a user borrowing/lending a device for temporary usage.

2. Node theft: By stealing a device [20], a threat agent may increase its time window,
for instance, to reverse engineer security systems—including storage—and protocols,
with the help of manuals and documentation, to discover data about an individual.
This may also include mobile device theft or loss (which has the same effects as theft
but is unintentional).
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3. Node cloning: Devices, especially tags, can be captured by a threat agent which can
then build replicas of them, which look like the original ones. These can then be
used to compromise a radio frequency identification (RFID) system by deceiving
even the RFID readers [21]. Other devices, for instance, key fobs, that may use near
field communication (NFC) as a protocol, may also be subject to cloning. As a result,
cloning copies the data found inside a device.

4. Radio signal capture: Radio signals that are emitted by devices, including the res-
idential router, can be used to detect the presence of people and track movements
inside the home. For instance, MIT’s RF-Pose project team [22] have trained a neural
network to interpret the way radio WiFi signals bounce off a person’s body to learn
movements of people. These attacks can potentially be conducted meters away from
the home, especially with signal boosters.

Network layer attack. The smart home network may be threatened by different attacks
to violate the user’s privacy. Attacks may take advantage of the lack of security measures
implemented on the smart home network, for example, a lack of authentication.

5. Routing attack: These attacks occur when the routing table or graph structure of the
home network is modified to benefit the malicious intruder. An example of this attack
class is a sinkhole attack [23] where an intruder gains control of a node inside a home
network to attract all traffic from neighboring nodes. This attack can allow a threat
agent access to data flows carrying personal data of individuals.

6. Service attack: Instances of this attack, such as denial of service (DoS) attacks, degrade
the quality of a service while causing privacy leaks [24]. When systems and devices
are offline, adversaries can access sensitive information or infer more information
by combining with other types of attacks. These attacks may also target the cloud
endpoints and the home broadband router [25].

7. Man-in-the-middle (MITM) attack: These attacks occur when a threat agent first uses
eavesdropping to learn about the communication keys used by two network peers
and then impersonates one part to the other by manipulating messages and their
flow, controlling the conducted communications [26]. Recently, Bettayeb et al. [27]
demonstrated how certain smart sockets are prone to MITM attacks by having all the
communication to/from the socket being transmitted in plaintext.

8. Eavesdropping: These attacks occur typically when the communication channels (e.g.,
wireless networks, Internet) are monitored to extract the content and information of a
conversation. Eavesdropping may also occur through side-channel information emit-
ted by IoT devices, e.g., power consumption and timing information. For instance,
recently, researchers demonstrated a novel long-distance side-channel attacking tech-
nique called “lamphone” that can be applied to recover full sound from a victim’s
room that contains an overhead hanging bulb [28].

9. Location tracing: These attacks occur when the user location is obtained or inferred,
for example, by GPS spoofing or distance-attacks [29]. This can result in tracking
the user possibly from anywhere there is an Internet connection, and potentially
indicating the right opportunity for a break-in. Recently, the cybersecurity authority
“SingCert” observed the increasing use of counterfeit contact tracing applications
that can be used to steal personal user data and possibly gain knowledge of user’s
whereabouts [30]. Some devices, e.g., vacuum cleaners, were also reported to produce
detailed maps of the home structure and sharing these with third-parties [31].

10. Inference attack: These attacks occur when information about an ongoing task or
application running on an IoT device is inferred [29]. For example, a sleep monitor
activity may be scanned to reveal whether a user is awake or not [32]. This attack
category may be generalized to infer other user activities, e.g., sleeping, showering,
and cooking. Inference attacks can typically be performed after eavesdropping, i.e.,
commonly after first identifying the particular device type.
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User layer attack. Residents may be the direct target of privacy attacks. Typically, this
happens by having them lured to install phony applications or by having them agree to poli-
cies and terms and conditions without being aware of privacy implications. Nonetheless,
these attacks may be also initiated at the smart home remote’s backend.

11. Data poisoning: In poisoning attacks, the malicious threat agents seeks to damage the
integrity and confidentiality of a system, including its machine learning model [33].
Similar to device tampering, but at a higher architecture level, this attack may result
in revealing sensitive data. Data poisoning attacks may also be caused by application
layer attacks such as cross-site scripting and SQL injection.

12. Model inversion: By interacting with a machine learning model, subtly changing
its activity, and using a technique known as model inversion, a threat agent may be
able to deduce key features of the underlying data on which the system was trained,
essentially gaining access to classified data [34].

13. Membership inference: This attack allows a threat agent to deduce whether a given
individual is present in the training data; and not necessarily learn additional personal
data; of a machine learning model [35]. This can be used for instance to detect if a
particular resident belongs to a certain demographic or a certain cluster of consumers
allowing for more targeted attacks.

14. Social engineering: This may result in users installing malware, e.g., in the form of
fake applications or browser plugins on their devices, resulting in unauthorized access
to their data. Shoulder surfing is a type of social engineering attack where sensitive
data may be revealed to an intruder example by hearing sensitive information being
spoken. For instance, certain smart speakers may require the user to speak a PIN code
aloud for protecting voice purchasing [36]. However, this code may be overheard by
others, e.g., by temporary visitors located at the home.

15. Data disclosure: A data controller with legal access to consumer data may disseminate
the information legally, e.g., to advertisement firms for marketing purposes, and thus
violate the privacy rights of an individual [37]. Moreover, a third-party may access
the residents’ data illegally, e.g., by storing and accessing information without being
given the explicit consent of the data subject [37]. For example, a recent study [38]
concluded that all surveyed consumer devices expose information to eavesdroppers
via at least one plaintext.

The developed taxonomy is a first approach towards categorizing privacy attacks
targeting smart homes. This taxonomy is used as a core component in Section 5 to determine
susceptibility to privacy attacks. In the next section, we discuss current work in relation to
threats and risks associated with smart homes.

4. Related Work

Over the last few decades, ample research has been conducted on various aspects of
privacy. From a risk management perspective, this work includes the identification and
organization of privacy threats, mitigation strategies, and methods to evaluate the risk
of privacy violations. This work lies at the intersection of the research areas of privacy
and security threat modeling and risk analysis. Accordingly, we present an overview of
the related work according to these two research areas and discuss similarities with and
differences from our work.

4.1. Threat Modeling Models and Methodologies

Threat modeling is a process for discovering, classifying, and evaluating the risk
of threats to a system from an attacker’s perspective. Originally, threat modeling was
exclusively used for security purposes, however, privacy researchers have extended it to
address privacy concerns [39].

The STRIDE model was proposed by Microsoft [40] as a security threat identification
process classifying threats into six categories (Spoofing, Tampering, Repudiation, Infor-
mation disclosure, Denial of service, and Elevation of privilege). While STRIDE is useful
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for performing threat analysis it is designed for security analysis and therefore its use for
privacy analysis is limited.

LINDDUN [41] is a privacy threat modeling technique, which is analogous to the
STRIDE model, helping in the systematic identification of privacy threats and the selec-
tion of privacy-enhancing technologies to mitigate the associated risk. The “LINDDUN”
acronym is derived from the categories of privacy threats it identifies, namely: Linkability,
Identifiability, Non-repudiation, Detectability, Disclosure of information, Unawareness,
and Non-compliance. While LINDDUN is useful for modeling of software-based systems,
it does not provide the means to evaluate risks or to analyze risks in a quantitative manner.

The Quantitative Threat Modeling Methodology (QTMM) [42] is a quantitative threat
modeling methodology to objectively draw conclusions about privacy-related attacks.
Similar to LINDDUN, QTMM is based on the STRIDE approach and follows the same
modeling steps. Nonetheless, QTMM focuses on three privacy-specific threat categories:
linkability, unawareness, and intervenability, which is restricted compared to LINDDUN.
QTMM uses quantifiable attack trees, for the purpose of helping an analyst to take objective
decisions about the threats, attacks, and mitigation mechanisms [42]. The use of risk-based
quantification through attack trees is lacking in LINDDUN. While QTMM provides a
methodology for analysing and evaluating privacy threats it does not deal with smart
home specific threats.

EPIC [43] is an operational methodology that is designed to identify and evaluate
privacy violation threats resulting from the deployment of an organizational cybersecurity
system (CSS)–CSSs tend to handle large amounts of sensitive information dealing with the
whole organization’s network traffic [43]. Specifically, EPIC is aimed at guiding security
and privacy professionals with instructions from modeling data exposure in a CSS to the
evaluation of privacy violation risks. Different to LINDDUN and QTMM, EPIC considers
any data disclosure that can reveal sensitive information about a respondent a threat.
Nonetheless, EPIC while having having similar objectives to ours, i.e., the evaluation of
privacy risks, it is does not capture the dynamics of smart homes and the modeling of
threat agents.

Other notable privacy threat modeling approaches and frameworks, e.g., FPFSD [44] and
PriS [45] exist in scholarly literature, however, these have different goals to ours. For instance,
having a focus on the organisational goals and business processes of a system (e.g., PriS [45]),
and giving advise for privacy enhancing mechanisms for software architectures (e.g., FPFSD
[45]). In our case, our main focus is on risk analysis. Moreover, there are other assessment based
frameworks, such as SDM [46] and CNIL [47], that function as privacy impact assessment (PIA)
methodologies. Specifically, SDM and CNIL are designed to build and demonstrate compliance
with the EU General Data Protection Regulation (GDPR) principles [48]. Achieving compliance
to the GDPR or other regulations is not the main scope of our work. Nonetheless, when we
formally model the smart home in Section 5.1, we use aspects derived from the GDPR, e.g., the
data processing purpose, for capturing privacy-related attributes.

Comparison to related work. In this paper, we adopt a similar approach to QTMM
for modeling attacks and quantifying privacy risks. However, unlike QTMM, we model
the system using a formal system specification rather than using a Data Flow Diagram
(DFD). While DFDs can be used to identify threats, their use is restricted, especially when it
comes to representing specific system properties that could help an automated analysis of
risks. A second difference is that, unlike the previously described research works, PRASH
is not intended to provide a generic or complete methodology. It is instead focused on
smart homes, and it is designed to help persons who are concerned about privacy risks
in their homes as a result of smart home technology implementation. Consequently, we
create metrics and associated guidelines designed for measuring the privacy exposure of a
smart home in a quantitative manner. For developing these metrics, and given the similar
data-intensive nature of CSSs to smart homes, we use EPIC as a reference for constructing
the metrics. However, different to both EPIC and QTMM, we also incorporate the dynamic
element of a threat agent. An advantage of including threat agents into threat modeling
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is that more effective protection strategies can be identified that cater for more realistic
attack scenarios.

4.2. Smart Home and IoT-Based Risk Analysis Models and Frameworks

Several papers focus on providing models or theoretical frameworks for the identifi-
cation and analysis of risks, i.e., risk analysis, in relation to the smart home. Typically, a
framework tends to give an organized structure of concepts and other things and sometimes
offering guidance and direction, whereas a model represents or explains the operation and
mechanism of some concept, typically developed within a framework [49]. In the majority
of the reviewed literature, the development of a framework is the main contribution when
it comes to risk analysis applied to smart homes (Table 2).

Denning et al. [50] provide a framework that outlines a set of emergent threats and
discuss the structure of some attacks targeting smart homes arising due to the rapid intro-
duction of connected devices. They use a scenario-driven and device-centered approach to
estimate the risk. Risk in their model is calculated considering: the feasibility of conducting
an attack, the attractiveness of the device as a compromised platform, and the potential
damage caused by executing an attack. The first two factors when combined indicate
the likelihood that an adversary will compromise a target device, and the third factor
expresses the impact. This study also surveys potential computer security attacks against
in-home technologies. The technological attacks identified include: direct compromise,
eavesdropping, man-in-the-middle, and social engineering. While this framework provides
a strategy for thinking about home security, it has different goals compared to our work.
Moreover, its risk evaluation parameters, e.g., device attractiveness, tend to be subjective
by nature.

Kirkham et al. [51] explore cloud computing in the context of home resource manage-
ment and propose a risk-based approach to data sharing between the home and its external
services. The authors designed an architecture and evaluate risk models to assist in this
management of devices from a security, privacy, and resource management perspective.
The proposed risk model is based on a use case for home resource management and pro-
vides means to calculate the legal risk, the appliance failure risk, and the resource security
risk. While this framework architecture and risks models have been evaluated, it is use case
specific making it difficult to port or extend to other smart home systems. Moreover, this
study does not consider privacy attacks, and instead it focuses on resource security risks;
this is represented as a summation of all probabilities of threats to the leakage of resources.

Jacobsson et al. [52] apply risk analysis on a smart home automation system. This
study pointed out that human-related risks (e.g., poor password selection) and software
component risks (e.g., unauthorized modification of functions in a mobile app) pose the
highest risk. One conclusion of this study is that risks derived from the human factor
are the most serious ones, and need more careful consideration, as they are inherently
complex to handle. The analysis is conducted using the Information Security Risk Analysis
(ISRA) method. While this work provides useful insights on the smart home, it is mostly
concentrated on the application of risk analysis, and not on the development of a generic
framework. This study, while it outlines various threats to the different smart home
components, it also identifies some attacks that potentially target a smart home, namely,
DoS attacks, social engineering attacks, replay attacks, and man-in-the-middle attacks.

Nurse et al. [53] outline a framework for modeling security and privacy risks in the
smart home. The framework alongside its supporting prototype interface is designed to
engage with smart home users and provide them with some insight into risks introduced
by smart home technology devices. This could potentially result in more proactive security
behavior by those users. During the threat and attack analysis phase of the framework,
there is support for the inclusion of the following attacks: device tampering, information
disclosure, privacy breach, DoS, identity spoofing, elevation of privilege, signal injection,
and side-channel attacks. While this framework helps understanding risks and attacks, it
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does not model vulnerabilities in different devices, making the analysis and application to
broader smart home contexts arguably limited.

Psychoula et al. [54] present a privacy modeling computation and management
framework for assisted living within smart homes. The authors analyze the privacy
features in the smart home that affect the privacy of the users. Based on these features, a
metric is developed to compute a sensitivity score of the collected information. This metric
is used in their framework to indicate risks involved in sharing the collected information
and for recommending privacy settings to manage those risks. While the framework helps
raise awareness and alert users about the sensitivity of information in their smart home, it
does not model the feasibility of privacy attacks, e.g., in terms of their likelihood of success,
and it does not consider any specific privacy attack.

Sturgess et al. [55] present a model for assessing privacy risks of a smart home based
on its data-collecting capabilities (e.g., microphone, camera, and presence sensors). Then,
privacy risk is given a severity score (high, medium, low, not applicable) depending on
the type of personal information that is being collected and the corresponding capabilities
being used for its collection. To assess privacy risk, the authors assume that any personal
information exposed to the smart home is available to any adversary. Consequently, the
model does not use or refer to any privacy attack. This is an assumption that simplifies the
risk analysis process. However, in practice, it is difficult to accurately assign a score that
correlates a capability to a set of private information, especially when excluding potential
attack types. For instance, some capabilities, e.g., microphone, may be used to collect other
information items than those claimed, e.g., passwords, through an eavesdropping attack.

Park et al. [29] propose a framework to measure the risk of IoT devices based on
security scenarios that occur in a smart home. The authors suggest a risk measurement
method and risk grade classification through the Factor Analysis of Information Risk (FAIR)
method and clustering method based on the scenario. The results of this study measure
the risk of possible scenarios based on security threats and assets that can be identified in
the IoT-based smart home environment. This study considers four distinct attacks that can
target a smart home–keystroke inference attack, task inference attack, location inference
attack, and eavesdropping. While the framework contributes in measuring risk of IoT
devices, its reliance on the identification of assets, threats, and misuse scenarios may limit
the application of the framework to more generic instances of smart homes.

IoT frameworks. While the frameworks and models mentioned above are focused
on the smart home, there are other frameworks having a broader scope but also have
relevance and applicability to the smart home. Moshin et al. [56] present a framework
that formally and quantitatively analyses IoT risks using probabilistic model checking.
Ge et al. [57] present a framework for graphically modeling and assessing security for the
IoT through formal system definitions. Recently, in 2020, targeting industry stakeholders,
the National Institute of Standards and Technology (NIST) released a generic privacy
framework [58] intended to help organizations manage privacy risks including those of
IoT applications. Other generic research works focusing on addressing risk assessment in
the IoT environment are mentioned in Kandasamy et al. [59].

Comparison to related work. In this paper, we organize the risk analysis framework
and select privacy metrics in the same way that Ge et al. [57] did. However, we focus on
privacy, which is an aspect that is not in that framework, and we focus specifically on the
smart home as the system to model. While we consider some of the mentioned works
on smart homes, e.g., Jacobsson et al. [52], our goals are to automate the risk analysis
process. Different to the mentioned research works, PRASH automates the risk analysis
process from the start by using attack trees that are automatically created from the smart
home formal specification. It also relies on established risk modeling foundations while
providing quantitative criteria for attributing the impact and attack success probability of
smart home vulnerabilities. Accordingly, PRASH also leverages a risk assessment model
known as DREAD [60] for measuring the privacy risk. DREAD is an acronym standing for
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Damage, Reproducibility, Exploitability, Affected users, and Discoverability. This method
is also incorporated in some of the mentioned threat modeling methodologies [42,43,61].

Additionally, given the relationship between privacy and security, we also address
requirements of security (e.g., that of confidentiality) in PRASH. To the best of our knowl-
edge, PRASH is the first framework that uses a formal graphical model for modeling and
analyzing privacy risks in smart homes, and taking into account the dynamic concept of a
threat agent. Moreover, while the number of attacks featured in other frameworks tends to
be rather limited (e.g., to 4 attacks in Park et al. [29] and to 8 attacks in Nurse et al. [53])
and is typically theoretical (e.g., Denning et al. [50] structure of home attacks), PRASH
identifies and exhibits 15 different attack types. Another main difference between PRASH
and the mentioned related work, is that PRASH uses both the CI theory of privacy and
GDPR concepts to formulate its conceptual and theoretical underpinnings. This places
this framework among the first to employ those foundations to determine the privacy risk
exposure of a smart home. We illustrate the main differences between our framework and
the other related works in Table 2.

Table 2. Contributions of PRASH in relation to the existing research work on smart homes and
IoT-applicable risk analysis models and frameworks.

Research Work Requirements Risk Factors Contribution Analysis Type Domain

Denning et al. [50] Security
Attack feasibility, target at-
tractiveness, and damage po-
tential

Framework Scenario-based Smart home

Kirkham et al. [51] Security and privacy
Attack feasibility, target at-
tractiveness, and damage po-
tential

Framework Use cases and data-
based assessments Smart home

Jacobsson et al. [52] Security and privacy Based on the ISRA method Empirical
evaluation Architecture-based Smart home

Nurse et al. [53] Security and privacy Attack impact and likelihood
scores Framework Scenario-based Smart home

Psychoula et al. [54] Privacy Data item sensitivity Framework User-driven Smart home

Sturgess et al. [55] Privacy Data-collecting capabilities Model Device-capabilities Smart home

Park et al. [29] Privacy Based on the FAIR method Framework Scenario-based Smart home

Mohsin et al. [56] Security
Vulnerability scores, system
configuration, and attacker’s
capabilities

Framework Probabilistic model
checking IoT systems

Ge et al. [57] Security
Attack success probability, at-
tack cost, attack impact, and
mean-time-to-compromise

Framework Formal graphical
model IoT systems

NIST [58] Privacy
Problematic data action, at-
tack likelihood, and attack
impact

Framework Requirements Generic

PRASH Privacy and security
Attack impact, attack success
likelihood, and threat agent
power

Framework Formal graphical
model Smart home

5. Framework Design

The proposed framework is composed of three modules: system model, threat model,
and a set of privacy metrics. The system model (Section 5.1) specifies and describes the
different components of a smart home setup and their interactions. The threat model
(Section 5.2) allows for the identification of privacy risks and attack paths using the system
model. The privacy metrics (Section 5.3) are a set of functions that help in the evaluation of
privacy risks.

While the modules are intended for people having some privacy expertise, in a real-
setting, the privacy metrics may also be introduced to smart home residents, e.g., through
an application with a simple graphical user interface, so that they can be involved in the
decision-making process to adjust the risk parameters. Similar involvement is adopted by
other risk frameworks, e.g., Nurse et al. [53] who assume a technical but non-expert smart
home user is kept in-the-loop for supporting risk modeling in the smart home context.

5.1. System Model

We define a smart home, S, as a 6-tuple (H, N, U, L, D, P) where:
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• H, House, represents the physical space which the residents inhabit. Formally,
H = {z1, z2, . . . , zn}, where zi ∈ LC, and zi represents a zone, e.g., a room or a
specific space, located within the curtilage of the house, where activities of daily living
(cooking, eating, showering, etc.) are performed. Here, we assume the existence of a
set of unique locations, LC, where the nodes in N can reside.

• N, Nodes, is a set of physical components that enable the smart home. Effectively,
N = C ∪M ∪ B, where C: connected devices, M: mobile devices, and B: backends.
For C, this represents network-connected devices such as wireless cameras and home
appliances such as Internet-enabled washing machines. For M, this typically repre-
sents smartphones (e.g., iPhone or Android) which are used for remotely controlling
and managing C. For B, this is typically a cloud data center, but it can also be an edge
device such as a dedicated home server. While C are located inside H, both B and M
can be located outside H. Here, we assume that there are a finite set CP of capabilities,
a binary relation I ⊆ N×CP, where I(n, cp) means that node n implements capability
cp, and a mapping function fnl : N → LC. The CP for C were summarized earlier in
Table 1.

• U, Users, is a set of human entities interacting with the smart home. A user may inter-
act directly with N or indirectly through services (e.g., applications) which are incorpo-
rated in N. Here, we assume that there are a set R of roles {data subject, data controller,
data user}, and a ternary relation At ⊆ U × R× N, where At(u, r, n) means that user
u has a role r with respect to node n.

• L, Links, is a set of communication channels, i.e., physical or logical channels, inter-
connecting N and U, and over which D are transferred. Effectively, L ⊆ (N × N) ∪
(N ×U) ∪ (U × N) representing the set of data flows. Here, we assume that channels
are unidirectional.

• D, Data, is a set of data items being collected and processed by N. Here, we assume
that D is represented as a set of tuples (di, ds, dp, dt, dl , de), with the values of each
attribute, except for di, being metadata, and where:

– di, data item, representing the specific attributes that N is collects or processes.
This ranges from a specific data item, e.g., name, to more generic data types, e.g.,
biometric data, depending on N [62]. An overview of data types collected by C is
displayed in Table 3.

Table 3. An overview of data types collected by smart home devices.

Data Type Data Item Examples

Household data Family preferences, routines, and house setup (e.g., room name)

Family data Photos, music, and games

Biometric data Audio, video, and health-related data

Contextual data User location, device characteristics, and network information

Other data Command and control data, user queries, and logs

– ds, data subject, representing the entity, whose data are being collected or pro-
cessed. This can have possible values ∈ {user, system} with: user indicating that
the entity represents U and system indicating that the entity represents N.

– dp, data processing purpose, representing the purpose, e.g., for uniquely identifying
a person, for collecting or processing di.

– dt, data retention time, representing the general condition for storing di with
possible values ∈ {inde f inite, purpose, date} with inde f inite indicating there is
no time constraint for the deletion of the data; purpose indicating that the data
has to be deleted after the completion of the corresponding purpose, i.e., after dp
is attained; and date indicating the actual date/time for the deletion of di.

– dl , explicit identifier, is a Boolean indicating whether di explicitly identifies the
identity (social security number, voice, MAC address, etc.) of ds.
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– de, data control, representing a set of tuples (control, phase) where control repre-
sents a privacy-enhancing technology with possible values ∈ {anonymization,
de-identification, encryption}, and phase indicates the data lifecycle phase, with
possible values ∈ {generation, collection, processing, disclosure}, over which the
control is implemented.

• P, Policy, is a set of rules describing the smart home configuration and operation.
Based on the trigger-action programming paradigm, and similarly to the IFTTT pat-
tern extension proposed by Nacci et al. [63], we represent a rule as the pair–trigger
and action. Trigger represents the condition, such as location, time, arrival of a specific
person, or a particular property of S, e.g., dp, for the rule to be activated. Action
represents updates or invocation on the data done as a consequence of receiving a cor-
responding trigger. Rules can be formalized using Extended Backus–Naur form [64]
as follows:

Rule = “(“ Trigger Action ”)”.
Trigger = AtomicFormula | “(“ BinaryLogicalOp Trigger Trigger ”)”.
AtomicFormula = “(“ BinaryTermOp Parameter ”)”.
Action = “(“ Read | Write | Relay ”)”.
Read = “read” Node ParameterName [Link] | User ParameterName [Link].
Write = “write” Node Parameter [Link].
Relay = “relay” Parameter Node [Link].
BinaryLogicalOp = “AND” | “OR”.
BinaryTermOp = “=” | “!=” | “>” | “>=” | “<” | “=<”.
Parameter = ParameterName ParameterValue.
ParameterName = “:” String.
ParameterValue = “?” String.

In the grammar above, we define three actions–read, write, and relay, that transmit
data between U and N. The action read extracts or queries a parameter from U or N.
The action write stores a parameter inside N. The action relay forwards a parameter
to a destination N. Each specified action takes an optional parameter, an instance
of L, indicating the communication channel over which a parameter is read or sent
to. In practice, the value of a parameter, represented as ParameterValue in the formal
grammar, could represent concrete instances of data such as media data (e.g., video),
numeral data (e.g., timestamps), and binary states (e.g., online/offline).

In Figure 3, we graphically illustrate the smart home system model formalization. Ef-
fectively, the attributes of S can be mapped to the architecture layers described in Section 2
as follows: N → hardware layer, L→ network layer, and U → user layer. Moreover, as
discussed in Section 2, we assume that D is pervasive across the different architecture
layers. As shown in Section 6, we encoded the system model using Alloy [65], a declarative
formal specification language.

Definition 1 (Data flow). We define a data flow as di.r where i specifies the data sender or subject
and r the data recipient, and i ∈ (U ∪ N) and r ∈ N. Each data flow carries data items
{d1, . . . , dn} ⊆ D. Technically, how data flows and are interrelated in terms of data transformations
are specified in P.

Definition 2 (Data context). We define a data context as Dc, consisting of a non-empty set of
data flows. Effectively, Dc represents the permissible data flows for use in a particular setting. We
assume that S has a set of valid contexts, Sc = {Dc1 , . . . , Dcn} specified by the homeowner.
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Figure 3. A schematic illustration of the smart home model’s components, including the logical
relationships between them. Items indicated in bold represent the main attributes of the system
model. Dotted boxes indicate abstract concepts.

For privacy risk analysis, we assume that the data contexts have been identified and
labeled according to their type and sensitivity. This would allow for instance differen-
tiating between sharing health data from a smartwatch to a doctor (e.g., represented as
Ddoctor = {dwatch.health_cloud}) versus sharing health data with another entity, e.g., to the
smart meter provider. The latter data context may be considered inappropriate by the data
subject, whereas the former data context is appropriate. Identifying the data contexts is
core to the CI theory of privacy.

5.2. Threat Model

Given S, we can identify the set of possible privacy threats, T, that can result in
a privacy violation. This can be done for instance by having S specified in a property
specification language and then analyzed through a model checker [66].

We assume that there is a global set of vulnerabilities, V for T. An attack exploits a
set of vulnerabilities and when it is successful it results in the creation of a corresponding
threat(s). Attacks targeting the smart home were established earlier and grouped in
a taxonomy in Section 3. In relation to the taxonomy, we assume the existence of a
function, query-taxonomy(c,al), that returns a set of attack types (e.g., service attack) from the
taxonomy given c representing the entity threatened (e.g., the network) and al representing
the access level (e.g., active). We assume that al is an optional parameter.

Each vi ∈ V has a set of exploitability-relevant parameters, α, where α = {αl , αi}
indicating the attack success likelihood (αl) and attack impact (αi), respectively. These are
calculated through the privacy metrics described in Section 5.3. In practice, data regarding
these scores can be obtained from risk assessment studies, and using open repositories
of vulnerabilities such as the Vulnerability Scoring System (CVSS) [67] or the National
Vulnerability Database (NVD) [68].
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Definition 3 (Attack tree). Using the attack tree formalization proposed by Ge et al. [57] we define
an attack tree, at, as a 5-tuple at = (X, Y, c, g, root). Here, X is a set of components which are
the leaves of at and Y is a set of gates which are the inner nodes of at. We require X ∩ Y = ∅
and root ∈ X ∪ Y. Let ℘(Z) denote the power set of Z. The function c : Y → ℘(X ∪ Y)
describes the children of each inner node in at (we assume there are no cycles). The function
g : Y → {AND, OR} describes the type of each gate.

In Algorithm 1, we document how the threat model is created from S. The algorithm
assumes the existence of a helper function, build-attack-tree(attack-goal, root, attack-types),
that generates an at using attack-goal as the goal of the attack, root acting as a unique
name for the at root node, and attack-types representing children nodes; and a function
join(at, ats) that appends a subtree ats to at and thus expanding at with new attack paths.
Finally, we assume that the vulnerabilities of N, U, and L are combined using logical
AND and OR gates; and that the leaf nodes of at are the identified vulnerabilities. In
Algorithm 1, line 7 and 8 refer to the computation of the attack success likelihood and
attack impact, respectively. While the attack impact can be calculated automatically through
DecisionSupportSystem, as shown in line 8, it can be adjusted considering the parameters
indicated in line 10. Details about these metrics are discussed in Section 5.3.

Algorithm 1 Computation of attack metrics for each vulnerability.
Input: S:smart home, Sc:data context set, ag:attack goal, al:access level
Output: at:attack tree

1: at.root← ag
2: for each Ψi ∈ (N ∪ U ∪ L) in S do
3: attack_type.Ψi ← query-taxonomy(Ψi, al)
4: subtree_at.Ψi ← build-attack-tree(ag,Ψi, attack_type.Ψi)
5: if subtree_at.Ψi not empty then
6: for each vi ∈ subtree_at.Ψi do
7: vi.αl ← p(discoverability) × p(reproducability) × p(exploitability)
8: vi.αi ← DecisionSupportSystem(P,D,Sc)
9: if user-override then

10: vi.αi ← Norm(affected users× damage potential)
11: end if
12: end for
13: join(at, subtree_at.Ψi)
14: end if
15: return at
16: end for

Threat agent. A threat agent, ta, is a person (or a group of persons) who originates
attacks to achieve a goal related to the system under attack [69]. Each ta owns different
skills and capabilities to achieve its objectives. Nonetheless, this is done by exploiting
vulnerabilities in S typically as a result of conducting attacks as identified in Section 3.
These vulnerabilities would allow ta access to data being transmitted along L, reading data
directly from N when stored or being processed, and obtaining it data directly from U.
Hereunder, we identify instances of malicious external threat agents targeting the smart
home ordered according to their respective offensive capabilities [70–73].

• Hackers. Malicious individuals, script kiddies, and employees of an organization
who may be disgruntled, nosy, or whistle-blowers. This agent is typically moved by
curiosity to experiment and try things out. An example of an attack conducted by a
hacker is a social engineering attack (Section 3, item 14).

• Thieves. Individuals that are associated with stealing mostly for personal financial
gain. This agent type is typically moved by a monetary gain, acquisition of knowledge,
peer recognition, and related. An example of an attack conducted by a thieve is node
theft (Section 3, item 2).
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• Hacktivists. Individuals that mainly pursue a political or social agenda often related
to human rights and freedom of information. Typically, hacktivists target specific
organizations or industries. An example of an attack conducted by a hacktivist is a
service attack (Section 3, item 6).

• Competitors and organized crime. Private criminal organizations and commercial com-
petitors (industrial spies) that compete for revenues or resources (e.g., acquisitions).
Competitors and organized crime are most likely moved by financial gains and in
part by terrorism motives. An example of an attack conducted by competitors and
organized crime is a routing attack (Section 3, item 5).

• Nation states. Enemy state attackers are groups of highly sophisticated individuals
that are well-funded by governments and associated with a military unit. Nation
states may target the home of individuals as part of digital surveillance programs and
cyberespionage campaigns. An example of an attack conducted by a nation state is
eavesdropping (Section 3, item 8).

Using Rocchetto et al. [74] work on the formal extensions to the Dolev-Yao attacker
model for cyber-physical systems, we can represent the actions and rules followed by, ta,
and thus also the connection between ta and S as:

ta(attacker-property) S(system-property)
action-result

action

where: attacker-property represents a property of ta, e.g., access type (in-person, remote,
in-network) with respect to S; system-property represents a physical or logical property of
S, e.g., connected device status (on, off); action is the action to be performed on S, e.g.,
reading data from N; and action-result is the result of the action performed (e.g., user’s data
obtained). The attacker-property and system-property act as preconditions to perform action.
Properties can also be further combined using Horn clauses [74]. In practice, the success of
executing an action depends on the threat agent’s power.

Threat agent power. Threat agents can exploit vulnerabilities in S and perform dif-
ferent actions. We assume the threat agent power, tap, to be a value, [0,1]. This value
represents the agent’s overall familiarity with S and its offensive capabilities. A high value
of tap, e.g., tap ≥ 0.7, is indicative of ta possessing advanced knowledge of S, e.g., in terms
of the devices used, home network configuration, and residence routines, and having ad-
vanced offensive capabilities, e.g., in terms of tools (hardware and software) and skills (e.g.,
technical expertise in exploiting protocols, hardware, and security services), whereas a low
value of tap, e.g., tap ≤ 0.3, indicates the contrary. In practice, tap, can also factor in other
attributes, for example, the available time and monetary resources of ta for performing
an attack. While we assume an aggregate value for tap, different attack attributes can be
combined, for instance using multi-attribute utility theory [75]. Nonetheless, a high tap can
be associated with nation states and competitors and organized crime, and in general a low
tap to hackers, thieves, and hacktivists.

5.3. Privacy Metrics

The privacy metrics help us measure the privacy risk, i.e., the risk to the data subject
after an attack is performed on S. Accordingly, we develop three metrics–attack success
likelihood, attack impact, and risk score, described as follows.

Attack success likelihood. This metric determines the probability of ta to successfully
compromise a target to achieve an attack goal and thus obtain access to the data of a data
subject. We assume the attack success likelihood, αl , to be a value, [0, 1]. Here, a low value
of αl , e.g., αl ≤ 0.3, is indicative that it is difficult and unlikely (rare) for ta to access a
component whereas a high value, e.g., αl ≥ 0.7, indicates the contrary, i.e., it is likely.
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In order to populate αl for the entire attack tree, we can use the aggregation rule
defined by Equation (1).

αl =

{
∏n

i=1 αl.i, if AND node
max(αl.i), i = 1 . . . n, if OR node

(1)

Based on the DREAD risk assessment model [60], we adopt the risk categories of
discoverability (e.g., determining how likely are the attackers to discover the vulnerability),
exploitability (e.g., determining how much work is needed to implement the attack),
and reproducibility (e.g., determining how reliable is the attack), for calculating αl of a
privacy attack. These parameters are combined as conditional probabilities in Algorithm 1.
Guidelines for determining the probabilistic score for each parameter are found in Table 4.

Table 4. Guidelines for grading the attack success likelihood (αl).

Attack Success Likelihood Description Prob. Score (p)

Discoverability (D)

The vulnerability exists in the most commonly used feature of the
smart home device, it is very noticeable, and there is published
information explaining the attack

0.7–1.0

The vulnerability is in a rarely utilized area of the smart home
device, malicious usage would necessitate some thought, and only
a few users should come across it

0.4–0.69

The vulnerability is obscure, and users are unlikely to figure out
the damage potential 0.0–0.39

Reproducibility (R)

The attack can be reproduced every time without requiring any
privileges, timing window, or any user interaction (e.g., the re-
booting the smart home device)

0.7–1.0

The attack can be reproduced, but requires the attainment of basic
user privileges, timing window, and may demand some user
interaction

0.4–0.69

The attack is very difficult to reproduce, requiring the attainment
of high privileges (e.g., administrative), user interaction, and pos-
sibly requiring the threat agent to physically touch or manipulate
the vulnerable smart home device

0.0–0.39

Exploitability (E)

A novice programmer could make the attack in a short time,
commonly using free online resources 0.7–1.0

A skilled programmer could make the attack, then repeat the steps 0.4–0.69

The attack requires an extremely skilled person, special equip-
ment, and in-depth knowledge of the smart home device and/or
the home area network every time to exploit

0.0–0.39

αl p(D) ×p(R) ×p(E); the score can be adjusted depending on the threat agent power (tap)

Some of the capabilities of N can also affect αl . For instance, if N implements remote
access it is more likely that this allows a ta easier access to N. Similarly, the more capabilities
N supports, the more likely it is that N is exposed to more vulnerabilities. For instance, if
N implements API, IFTTT, web browser accessibility, and smartphone accessibility, this is likely
to increase the discoverability of potential attacks as the attack surface of S is widened.

It is also possible to positively correlate αl to tap. Thus, we can evolve αl into αl.ta to
factor in tap. In this way, αl.ta becomes jointly dependent on S and ta properties. Through
αl.ta we can more realistically compute risk scenarios based on dynamic threat agent behav-
ior (e.g., including increasing attacker resources). Using Item Response Theory [76–78] we
can combine the relation between tap and αl in a logistic function as follows:

αl.ta =
etap−αl

1 + etap−αl
(2)

Using Equation (2) we can represent scenarios where, for example, if an attack is more
difficult, the αl will be lower assuming tap stays the same.
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Attack impact. This metric determines the potential loss to the privacy of a data
subject caused when ta manages to successfully achieve the corresponding attack goal. We
assume the attack impact, αi, to be a value, [0, 10]. Effectively, this equates to the maximum
potential harm caused to the data subject when ta successfully compromises a target. Here,
a low value, e.g., αi ≤ 3, indicates that the impact is almost negligible, whereas a high
value, e.g., αi ≥ 7, is indicative that the impact is major.

In determining αi, we base it on the calculation of the level of identification of the data
subject and data context sensitivity. Formally, we assume the existence of a decision matrix,
γ = Mil dc , for calculating the privacy impact with il representing the identification level and
dc representing the data context sensitivity. We also assume a corresponding lookup function,
fθ :il , dc → αi, for γ. While we assume that αi is associated with a single data subject
rather than the collective dimension—as is the typical case when conducting privacy risk
analysis [79]—we also indicate how fθ can be tuned for impact that affects a group of users,
e.g., the entire family.

Identification level. The identification level, il , determines the extent to which a data
subject can be identified from a data flow. Identification of a data subject can occur by
having explicit identifiers declared in the data flow (i.e., in the corresponding dl attributes),
or otherwise by having quasi-identifiers that can help identify a data subject indirectly
with sufficient background knowledge. Some examples of possible identifiers that can
used to identify a person are: email addresses, device identifiers (e.g., MAC addresses
and serial numbers), biometric identifiers, and more [80]. We assume that, il , to be a
value, [0, 10]. Here, a low value indicates that explicit identity is not part of the data flow
and quasi-identifying information in the data flow is unlikely to reidentify a data subject,
whereas a higher value indicates the contrary and thus a possibility that reidentification of
the data subject is possible. In determining whether identification data are present in a data
flow, the dl attribute of the corresponding data items (di) of a data flow can be inspected.

Data context sensitivity. The data context sensitivity, dc, identifies the violation to
privacy as perceived by the data subject in a specific context. We assume that, dc, to be a
value, [0, 10]. Concurring with the CI theory of privacy [81] we associate dc to the intended
use of the collected data. Thus, this value equates to the whole context of the data flow,
instead of the individual data element. Here, a low value, indicates that the data are being
used/processed in a context that is assessed by the data subject as involving a low impact
(e.g., sharing energy profile of the home with the smart grid supplier), whereas a high
value indicates the contrary and thus data are being used in a critical context (e.g., sharing
medical data with a healthcare provider) implying that the user privacy can be at stake
depending on il . The data context sensitivity may also depend on the location where a
node is installed (e.g., the bathroom might be considered a more sensitive context than the
kitchen room). Here, we assume the existence of an oracle that can identify the current
context of a data flow, and by inspecting the smart home policy (P) can determine whether
the data flow respects the designated context or not.

Lookup function. The impact is determined by fθ using Table 5 as γ. In practice,
Table 5 serves as guidance and the data subject can adjust the particular weights according
to their own judgement. A similar approach is followed by EPIC [43] for building the
privacy likelihood matrix. However, we also include additional suggestions to further
refine the output produced by fθ and thus the final score for αi. Based on the DREAD
model [60] we include damage potential (e.g., determining how much the attack costs to the
family) and affected users (e.g., determining how many people are impacted by the attack)
as potential impact factors for αi. The mentioned risk factors and fθ were integrated earlier
Algorithm 1. In Algorithm 1, the DecisionSupportSystem is effectively the implementation
of the lookup function and decision matrix.
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Table 5. An example of a decision matrix for calculating the privacy attack impact (αi).

Ident. Level (il)
Data Context Sensitivity (dc)

Negligible Low Medium High Critical

critical 1 5 7 9 9

high 1 3 5 7 9

medium 1 3 5 5 7

low 1 3 3 3 5

negligible 1 1 1 1 1

For damage potential, we associate this to the monetary loss, psychological, and
potentially safety harms caused by an attack, and grade this using an ordinal scale (0–5).
We assume that a higher value of damage potential is associated also as to when there are
vulnerable data subjects involved. Some examples of vulnerable data subjects are children,
employees, and people needing special protection [82]. The damage potential can also be
calculated based on the data items (di) that N collects and processes, and the data subjects
(ds) corresponding to those. Leaking certain di can cause a direct threat to user privacy, for
example, by revealing patterns of social life, behaviors and actions, the state of one’s body
and mind, etc. [83]. Arguably, the more of these aspects that are affected, the more likely it
is for an increased damage potential. Nonetheless, if there are data controls (de) set across
the different data lifecycle phases of S then the damage potential is likely to become lower
than when not set.

For affected users, we assume that this represents whether the leaked data affects one
individual to multiple users, e.g., the entire family, and grade this using an ordinal scale
(1–3). The affected users is also related to the smart home backend (i.e., B). For instance, if
B is a cloud backend, then it is more likely that a group (2) is affected. It can also be argued
that if a node (N) implements gateway functionality as a capability then arguably more users,
e.g., the entire family, could be affected in case N is compromised.

In Table 6, we display the risk factors associated with αi. These factors are combined
using multiplication, and thus αi = Norm(damage potential × affected users), with Norm being
a function that normalizes the output into the range of [1–10].

In order to populate αi for the entire attack tree, we can use the aggregation rule
defined by Equation (3).

αi = max(αi.i), i = 1 . . . n, for both AND or OR node (3)

Risk score. Following a common approach in computer security, we compute the
privacy violation risk as the combination of likelihood of occurrence of a privacy violation
and its impact. Specifically, by multiplying αl with αi, we come up with a quantitative score
(rµ) representing the risk level of a smart home component. This value is indicative of the
priorities that should be invested in making the smart home secure against the discovered
vulnerabilities. Scores range from 0 to 10, with 10 being the most severe. In Table 7, we
provide guidelines on how the risk scores can be described.

In order to populate rµ for the entire attack tree, we can use Equation (4).

rµ = αl.µ × αi.µ, µ = 1 . . . n (4)
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Table 6. Guidelines for grading the attack impact (αi).

Attack Impact Description Quantitative Score

Affected users (U)

The entire family and potentially other relatives and people asso-
ciated with the family (e.g., friends), are affected 3

Multiple members of the family are affected 2

One resident is affected 1

Damage potential (D)

Personal and/or sensitive household information are leaked, in-
cluding potential information about vulnerable data subjects,
causing direct, serious monetary, psychological, and/or safety
harms to the affected users

4–5

Some personal or sensitive household information is leaked, how-
ever they do not include any vulnerable data subject, and the
disclosure does not cause a direct or serious loss to the privacy of
any resident

2–3

Trivial information is leaked, and there is no perceived psycholog-
ical or safety impact to any resident 0–1

αi Norm(A × D)

Table 7. Smart home component severity rating score (rµ).

Severity Score Description

7.0–10.0 Vulnerabilities in the smart home component can be easily exploited to jeopardize user privacy

4.0–6.9 Vulnerabilities in the smart home component may be more difficult to exploit, yet they can still
endanger user privacy under certain conditions

0.1–3.9
Vulnerabilities in the smart home component are believed to necessitate improbable circum-
stances in order to be exploited, or where a successful exploit would result in minimal conse-
quences to user privacy

0.0 There is no risk in using the smart home component

6. An Application of PRASH

In this section, we demonstrate the usefulness of the proposed framework for analyz-
ing privacy risks of smart homes. We start by describing how we generated a smart home
instance from the formal system model specification (Section 6.1). Next, we present the
threat model (Section 6.2) for that instance. Finally, we reveal the privacy metrics and use
those to summarize the risks found in the smart home instance (Section 6.3).

6.1. System Model

To generate a sample smart home we used the open source language and analyzer
called Alloy as our formal specification language. Three alternatives to it are B, TLA+, and
Z. However, we adopted Alloy in particular as it supports, through its automated tool
called Alloy Analyzer, the generation of graphical results which are convenient for analysis
work. Moreover, we used Alloy to capture the specifications of the smart home and the
structural relations between its various components. The source code we developed and
used for specifying and generating a smart home system model is available on Github
(https://github.com/bugejajoseph/smarthome (accessed on 8 September 2021)).

For the smart home S, we considered a realistic use case consisting of a connected
toy and a video doorbell as the main smart home devices. The connected toy was a voice
interactive toy used by a child for personalized entertainment and learning purposes. The
video doorbell was an outdoor camera that automatically notified the parent (homeowner)
when a visitor arrived at the door. Live footage from the video doorbell was sent to the
mobile phone of the parent. Both the connected toy and video doorbell were connected
to the cloud. By using the system model described in Section 5.1, we can represent the
described use case as follows:

• House = {KidRoom, FrontDoor, LivingRoom}
• Nodes = {MobileDevice, ConnectedToy, VideoDoorbell, Cloud}
• Users = {Child, Parent, ServiceProvider}
• Links = {Link0, Link1, Link2, Link3}

https://github.com/bugejajoseph/smarthome
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• Data = {
(motion, user, detect presence of visitors, purpose, f alse, ∅),
(video, user, video footage of visitors, purpose, f alse, {(encryption, disclosure)}),
(audio, user, conversation between child and connected toy, inde f inite, true, ∅),
(control, system, smart home states and parameters, purpose, f alse, ∅)

}

The data items represent instances of the smart home data types household data,
biometric data, and other data, which we identified earlier in Table 3.

• Policy = {
r1 = (= :motion_detected ?true) read VideoDoorbell :video_footage
r2 = (!= :video_footage ?empty) relay :video_footage ?video MobileDevice
r3 = (= :listening_on ?true) relay :conversation ?audio Cloud
r4 = (!= :conversation ?empty) relay :conversation ?audio ConnectedToy

}

The policy indicates that when motion is detected by VideoDoorbell, the corresponding
video footage is automatically captured (r1) and is made available to MobileDevice (r2).
Furthermore, audio data are relayed to the Cloud (r3), which are subsequently used to
interact back with the child through the ConnectedToy (r4).

Though Alloy we encoded the described smart home setup as shown in Figure 4.
For simplicity, we focused on representing nodes, links, and users as our main entities.
Nonetheless, we also added capabilities, as per Table 1, to the connected devices, mapped
the users to the nodes, and assigned roles to users.

Figure 4. A smart home configuration generated using Alloy. The smart home setup consists of
4 nodes (ConnectedToy,VideoDoorbell,MobileDevice,Cloud), 3 users (Child,Parent,ServiceProvider),
and 4 links (Link0-Link3) that interconnect users to nodes, and vice versa. All the relations between
the different model components is displayed in the form of labelled arrows.

We can assume Sc = {EntertainmentCxt, SecurityCxt} where EntertainmentCxt =
{audioChild.ConnectedToy, audioConnectedToy.Cloud, audioCloud.ConnectedToy} and SecurityCxt =
{videoVideoDoorbell.Cloud, motionVideoDoorbell.Cloud, videoCloud.MobileDevice}. These contexts indi-
cate how the different data items are exchanged in S.

Finally, we assume LC = {KidRoom, FrontDoor, LivingRoom, ServiceProvider}. Con-
sequently, we assume Cloud to be located in ServiceProvider, and MobileDevice,
VideoDoorbell, and ConnectedToy are located in LivingRoom, FrontDoor, and KidRoom,
respectively.
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6.2. Threat Model

In our threat model, let us assume that the attack goal is that of profiling of the house
occupants. Profiling is a threat of collecting and correlating information about individual
activities, and subsequently using them to generate new information from the original
data [66]. Aggregated profiles of individuals can constitute a risk to a person’s privacy,
particularly if children are involved. We created an attack tree for this attack (Figure 5)
through Algorithm 1.

In Figure 5, we assume that the system model, S, is that described in the previous
section. The attack tree describes how the different components of the model can be
compromised to achieve the attack’s goal. We assumed that the attack is conducted by
exploiting a set of hypothetical vulnerabilities (v1, . . . , v12). For the assigned values of
αl and αi, we based these on specifications of S and on data derived from vulnerability
databases, when possible, as explained below:

• Node capabilities, location, and users. We considered the specifications of S, particu-
larly, the device’s capabilities, location, and user types. For instance, the VideoDoorbell
had embedded gateway functionality, IFTTT, and supports remote access. These capa-
bilities could add up to a higher αl (due to the broadened attack surface). Nonetheless,
αi was low, as the location was not particularly sensitive (outdoors) and the users
were visitors, not necessarily family members. The rationale for calculating αl and αi
was detailed in Section 5.3.

• Data contexts, policy, and controls. We consider dynamic aspects captured in S, partic-
ularly, those related to the data, policy, and contexts. For instance, the ConnectedToy
is sending audio data, which is indicated to identify a child, unencrypted, and that
makes αi high. Furthermore, the context EntertainmentCxt and policy rules r3 and
r4 indicate that this data are sent to the cloud and back, indicating a risk that sensi-
tive data, potentially of the entire family, are being channeled out of the home and
without using any privacy related controls (e.g., anonymization). Thus, αl is also
considered high. In practice, the DecisionSupportSystem can implement some of this
logic automatically.

• Vulnerability databases. We used vulnerability databases for finding actual/practical
instances of weakness of smart home devices. A search for vulnerabilities for smart
home devices embedding cameras revealed various instances where such cameras
have been repeatedly exploited. For example, αl of exploiting vulnerability CVE-2015-
2887 (https://www.cvedetails.com/cve/CVE-2015-2887 (accessed on 8 September
2021)), targeting a certain type and brand of connected camera, was reported as critical,
and thus associated with high αl . In practice, searching for vulnerabilities affecting
smart home devices can be done automatically [84].

Moreover, to implement the attacks, we assumed ta1 = {hacker} with ta1p = 0.2, and
ta2 = {nation-state} with ta2p = 0.8. In terms of actions and rules followed by ta1 and ta2,
we assumed that both can learn an attribute (e.g., user credentials) of N or L without being
physically present inside the house.

ta(distance, remote) S(attrib, stored/processed in N)

ta learns attrib o f N
read(attrib, N)

ta(distance, remote) S(attrib, transmitted on L)
ta learns attrib o f L

read(attrib, L)

Moreover, ta2 can learn an attribute (e.g., personal and sensitive data) of U by being
physically located inside the home network.

ta(distance, in-network) S(attrib, is known by U)

ta learns attrib o f U
listen(attrib, U)

https://www.cvedetails.com/cve/CVE-2015-2887
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Goal: Profiling of the house occupants
1. Node::Node0::Cloud

1.1 Conduct a service attack (v1, αl = 0.3, αi = 8)

OR 2. Node::Node1::MobileDevice

2.1 Conduct a service attack (v2, αl = 0.5, αi = 2)
OR 2.1 Conduct node theft (v3, αl = 0.5, αi = 7)

OR 3. Node::Node2::VideoDoorbell

3.1 Conduct a service attack (v4, αl = 0.7, αi = 4)

OR 4. Node::Node3::ConnectedToy

4.1 Conduct service attack attack (v5, αl = 0.8, αi = 9)

OR 5. Link::Link0

5.1 Conduct eavesdropping of audio data (v6, αl = 0.7, αi = 4)

OR 6. Link::Link1

6.1 Conduct eavesdropping of audio data (v7, αl = 0.7, αi = 9)

OR 7. Link::Link2

7.1 Conduct eavesdropping of video data (v8, αl = 0.5, αi = 4)

OR 8. Link::Link3

8.1 Conduct eavesdropping of video data (v9, αl = 0.5, αi = 2)

OR 9. User::Child

9.1 Conduct a social engineering attack (v10, αl = 0.2, αi = 6)

OR 10. User::Parent

10.1Conduct a social engineering attack (v11, αl = 0.2, αi = 6)

OR 11. User::ServiceProvider

11.1Conduct a data disclosure attack (v12, αl = 0.4, αi = 10)

Figure 5. Attack tree with the attacker’s goal being that of profiling the house occupants.

6.3. Privacy Risk Analysis

Based on the privacy metrics established in Section 5.3, we could calculate the overall
attack success likelihood and attack impact, and thereby describe the risks as follows:

Attack success likelihood: We calculated αl by Equation (1).
αl = max(αl.v1 , max(αl.v2 , αl.v3 ), αl.v4 , αl.v5 , αl.v6 , αl.v7 , αl.v8 , αl.v9 , αl.v10 , αl.v11 , αl.v12 )

= max(0.3, max(0.5, 0.5), 0.7, 0.8, 0.7, 0.7, 0.5, 0.5, 0.2, 0.2, 0.4)
= max(0.3, 0.5, 0.7, 0.7, 0.8, 0.7, 0.5, 0.5, 0.2, 0.2, 0.4)
= 0.8

The computational results indicate that the most likely target for achieving the attack
goal with 80% success rate is by attacking the ConnectedToy through vulnerability v5.
The ConnectedToy potentially could be using insecure protocols, default passwords; it
may have firmware that is not updateable; and more. Effectively, this may translate to:
p(discoverability) = 1, p(exploitability) = 0.8, and p(reproducability) = 1. Since both ta1
and ta2 have remote access to the home, this attack is possible to conduct by both.

Next, we applied Equation (2) to calculate αl.ta for ta1 and ta2 for exploiting vulner-
ability v5. The results are αl.ta1

= e0.2−0.8

1+e0.2−0.8 ≈ 0.35; αl.ta2
= e0.8−0.8

1+e0.8−0.8 ≈ 0.5. Consequently, this
indicates that ta2, as expected, has a better chance of achieving its goal than ta1.

Attack impact: We calculate αi by Equation (3).
αi = max(αi.v1 , max(αi.v2 , αi.v3 ), αi.v4 , αi.v5 , αi.v6 , αi.v7 , αi.v8 , αi.v9 , αi.v10 , αi.v11 , αi.v12 )

= max(8, max(2, 7), 4, 9, 4, 9, 4, 2, 6, 6, 10)
= max(8, 7, 4, 9, 4, 9, 4, 2, 6, 6, 10)
= 10

The computational results indicate that the most severe impact to privacy is when
a data disclosure attack targets the service provider. Potentially, this attack could reveal
aggregated data of multiple families, including past, current, and inferred data about
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vulnerable data subjects and other subjects. Effectively, this may translate to: affected users
= 2 and damage potential = 5. Nonetheless, conducting an attack targeting a service provider
might be challenging, as they are likely to have personnel professionally trained on privacy
and security, who aware of potential legal, compliance, and regulatory ramifications.

Risk scores: Using Equation (4) we computed the risk scores (rµ) for the entire attack
tree displayed in Figure 5. The risk score for each component of the smart home is displayed
in Figure 6. The results indicate that securing the ConnectedToy (followed by securing
Link1) should be the top priority for making the smart home more privacy-preserving and
secure. In practice, this might mean to connect the ConnectedToy to a separate segregated
network, and potentially replacing Link1 with a virtual private network connection.

Figure 6. Radar chart indicating the risk level associated with each smart home component, including
the risk score adjusted for the hacker and nation state actor. This figure shows that the highest risk
(risk score > 7) is that of an attack targeting the ConnectedToy. Therefore, the most priority should be
put on securing the ConnectedToy.

7. Extensions and Limitations

While the proposed privacy risk analysis framework is useful for better understanding
the type of attacks that can target the smart home and in analyzing privacy risks therein,
our research does not come without limitations.

Attack taxonomy. There are multiple ways for organizing privacy attacks. The
approach we have taken is admittedly biased towards the selected dataset, primarily con-
sisting of scholarly articles that we have analyzed. Consequently, the selected dataset may
have excluded certain attack types, such as coordinated or interdependency-based attacks,
that could be theoretically harnessed to invade user privacy as well. Moreover, while the
taxonomy is focused on the compromise of user privacy, some attacks, as mentioned in
Section 3, may also violate the security and safety of smart home residents. For instance,
confidentiality, which is a main security goal, affects privacy, as the unauthorized access to
some data may reveal the identity of a user. Likewise, some privacy attacks, e.g., location
tracing, may compromise the safety of the occupants, for instance by having a threat agent
stalk and harass victims in their homes.

System model. In the smart home system model, we did not explicitly represent the
decision logic, i.e., the control algorithms, that are responsible for controlling and satisfying
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the system level specific constraints (e.g., safety, security, and privacy-preserving behavior).
Instead, we assumed that such services, rightly so, reside in the nodes, and that their
inputs/outputs consist of data. This is akin to a black box modeling approach where
the focus is on the interface and the messages being exchanged, which we represented
as policy rules using a formal grammar, instead of the internal behavior of the system.
Nonetheless, we represent the capabilities, which may act as an enabler for an attack to
occur, as attributes in the nodes. This approach allows for extending the model in the
future to cater for additional threats, including concrete instances of nodes.

Threat model. Similarly to other works on quantitative risk modeling, we make
use of attack trees for quantifying privacy risks. While this approach is useful, it is
worthwhile considering other alternatives. For instance, attack-defense trees that include
countermeasures within the attack tree. Attack-defense trees are useful for conducting
risk assessment, and thus going beyond risk analysis. Moreover, we assumed a threat
agent that has a global threat agent power parameter. While this works, to simulate more
advanced use cases an extension of the threat model could leverage for instance, Hidden
Markov Models, to represent dynamic behavior changes. Moreover, while the constructed
threat model, can also cater for physical attacks, focusing on threats targeting directly the
users, e.g., the threat of coercion to make a user yield certain information, is not the main
scope of our work.

Privacy expertise. PRASH was primarily designed for persons who have some privacy
expertise. These users tend to have experience with privacy by design and knowledge of
secure development practices. Especially for some IoT vendors, in particular startups, this
privacy expertise, might not be available. Nonetheless, such knowledge requirements may
not be necessary for all the framework modules. Additionally, we also assume that smart
home residents are the designated owners, and thus the accountable entities, of the smart
home. In practice, this implies that they are also somewhat involved in the risk analysis
process. However, in our case, we assume that this involvement is only needed to override
certain parameters of the framework, in particular with respect to the attack impact.

8. Conclusions and Future Work

Smart homes can contribute to improving the quality of life of individuals. Nonethe-
less, smart homes challenge the notion of the home as a private and protected space. Smart
homes are vulnerable to diverse privacy risks that are challenging to identify and analyze,
especially given the dynamic and evolving features of their enabling IoT technologies and
the processes supporting those. Accordingly, we proposed a framework called PRASH for
modeling and assessing the privacy risks of smart homes. This framework uses as input a
system model, a threat model, and a set of privacy metrics for helping with automating
the discovery and evaluation of privacy risks affecting such systems. The capabilities of
PRASH for describing a smart home for privacy risk analysis were demonstrated through
a use case involving a smart home that was automatically generated through Alloy, and
consequently its risks were computed. Modeling the smart home with a formal specifica-
tion enables early identification of threats, better planning for risk management scenarios,
and mitigation of potential impacts caused by attacks before they actually hit the homes
and impact lives of residents. Overall, the proposed framework contributes to advancing
the research in the area of risk analysis as applied to smart homes, and helps deepen the
understanding and reasoning about privacy concerns affecting such systems.

For future work, it would be useful to develop a tool that automatically creates attack
trees from a system model instantiation. This could be done by traversing the different
elements of the proposed model and representing them on a graph to, e.g., illustrate the
weak points of any given smart home. The computation of the different attack metrics
can be done partially automatically, particularly for the nodes, by harnessing vulnerability
databases such as the CVSS or NVD. A second avenue for future work would be to
investigate the best ways to present risk analysis results to non-technical users and also
how to communicate risks to users when they occur. Having the users engaged with the
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risk analysis process may contribute to increasing the trust in smart homes. Finally, it
would be beneficial to evaluate the framework in a setting involving different stakeholders,
e.g., smart home developers, service providers, and residents. This could serve as a means
of better assessing the feasibility and usefulness of the presented framework. Potentially, in
order to achieve this, prototypes could be developed and a participatory design approach
could be employed.
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